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a b s t r a c t

Considerable difficulties persist in modelling the thermodynamics of multicomponent aqueous elec-
trolyte solutions, especially at high concentrations. The widely adopted Pitzer formalism suffers from
severe disadvantages, particularly with the combinatorial increase in mixing parameters required in mul-
ticomponent systems. As an alternative, the simple mixing rules of Young, of Harned and of Zdanovskii
have been employed to predict the properties of mixtures using only the properties of the binary con-
stituents with few or no additional parameters. Among these, Zdanovskii’s rule is particularly promising
because it constitutes a fundamental criterion for ideal mixing, i.e. when solutions having the same solvent
activity are mixed in any proportion, the solvent activity remains unchanged. Many mixtures of strong
electrolyte solutions are known from experiment to obey Zdanovskii’s rule. This is important because
hemical species

trong electrolytes
hysicochemical properties
ater activity

danovskii’s rule

application to aqueous electrolyte systems of practical interest has been hindered due to the process-
intensive determination of water activities using the Gibbs–Duhem relation. This paper describes an
alternative method which efficiently calculates the water activity of a multicomponent solution obeying
Zdanovskii’s rule. Some specific examples of the method are presented and various applications consid-
ered. In some systems, where deviations from Zdanovskii’s rule occur, a single empirical parameter can

asily i
be obtained and can be e

. Introduction

Considerable difficulties persist in modelling the thermodynam-
cs of multicomponent aqueous electrolyte solutions, especially at
igh solute concentrations. This imposes restrictions on the appli-
ations of such models, which are needed in a wide variety of
ractical contexts such as in measurement science, oceanography,
iochemistry and hydrometallurgy [2].

Although the Pitzer formalism [3] is frequently adopted in the
hemical literature it suffers from severe disadvantages. Especially
hen temperature and pressure changes are involved, the equa-

ions require many empirical parameters and are susceptible to
orrelation. They therefore tend to be ill-conditioned, and parame-
er fitting becomes highly dependent on the range of available data
4]. Their predictions are thus subject to serious error propagation.

These issues become profoundly problematic with multicom-

onent systems because of the combinatorial increase in the
umber of Pitzer parameters needed and because of the rel-
tively few experimental studies made on mixed electrolyte
olutions. Reactions between the chemical species in solution,

� Part IV is reference [1].
∗ Corresponding author. Tel.: +61 8 9360 2916.

E-mail address: D.Rowland@murdoch.edu.au (D. Rowland).

039-9140/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2009.11.048
ncorporated into the calculations.
© 2009 Elsevier B.V. All rights reserved.

which often dominate in applied systems, add significant further
complication.

It has been evident for some time that a different, more fun-
damental, theoretical approach to modelling aquatic chemistry is
needed to control the number of modelling parameters and to cope
better with extrapolations into multicomponent spaces that have
not been experimentally characterised. A useful concept has been
to describe the properties of binary systems (i.e. aqueous solutions
with only one electrolyte) empirically but to employ simple lin-
ear mixing rules to predict the properties of their mixtures [5,6].
Good examples of such rules are those of Young, of Harned and of
Zdanovskii [2].

Zdanovskii’s rule [7–9] in particular is promising. Zdanovskii’s
rule states that when solutions having the same thermodynamic
activity of water are mixed in any proportion the solvent activ-
ity remains unchanged. This constitutes a fundamental criterion
for ideal mixing, i.e. an effective lack of interaction between com-
ponent electrolytes when there is no change in solvation [2].
Many strong electrolyte solutions are known from experiment to
obey Zdanovskii’s rule [10–12] so their mixtures can be accurately

described with no additional parameters. Moreover, in other less
ideal systems (as described below), it is often the case that the
observed deviations are small and can be well represented at con-
stant temperature by only a single additional empirical parameter.
This is a major advantage over Pitzer equations which, even at
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analytical and numerical derivatives were trialled. Where numer-
ical derivatives were used, the first determination of the Jacobian
used analytical derivatives. ‘J’ is the number of iterations for which
the Jacobian matrix was evaluated. ‘Iter.’ is the number of times
the matrix equation was solved. ‘F’ is the total number of times the

Table 1
Convergence results for a system of 4 electrolytes.
Fig. 1. Zdanovskii isopiestic plot.

onstant temperature, invoke two extra parameters for each elec-
rolyte combination.

Unfortunately, to exploit Zdanovskii’s rule in a conventional
anner requires the water activity of the mixture to be deter-
ined iteratively by integrating the Gibbs–Duhem relation [13, p.

3]. Even nowadays, this is such a process-intensive calculation
hat it prohibits general modelling applications involving aque-
us electrolyte systems of industrial, environmental or biological
nterest.

Several workers including Wang (e.g. [14] and references
herein) and Clegg and Seinfeld (e.g. [15] and references therein)
ave shown the effectiveness of Zdanovskii’s rule (and extensions
pon it) as it pertains to predicting the thermodynamic proper-
ies of mixtures such as aqueous electrolytes and non-electrolytes,
erosols and molten salts. However it has not been made suffi-
iently clear – for example in an algorithm – how the estimation
f properties in the ternary or higher systems follows from the
nowledge of the binary properties. The true test of the applica-
ility of Zdanovskii’s rule (or other mixing rules) is not only the
ccuracy of predictions but also the computational cost associated
ith those predictions. This burden must be brought in line with

he comparative cost of non-iterative schemes if it is to be used
n large-scale environmental and industrial process applications.
ccordingly, in this work we present the equations used in our
lgorithm and discuss some methods to improve its performance.

. Theory and equations

.1. Zdanovskii’s rule

The specific goal of this work is to determine the water activ-
ty of a multicomponent aqueous solution given its composition,
.g. given the concentrations of A and B in the ternary mixture
–B–H2O, find the water activity, aw. This can be accomplished
y assuming the Zdanovskii relationship, i.e. mixing occurs ideally
long a path of constant water activity. An example of a ternary sys-
em featuring strong agreement with Zdanovskii’s rule is shown in
ig. 1. Each of the dashed lines connects binary solutions having
qual water activity. The data lie almost exactly on the corre-
ponding iso-activity line. In general, the key then is to find the
oncentrations of all binary component solutions which have the
ame water activity as the mixture.
In the simplest case of a ternary mixture, Zdanovskii’s rule can
e expressed as

= m1

m10
+ m2

m20
Fig. 2. Illustration of the convergence of the current algorithm.

Here mi is the concentration of solute i in the mixture and mi0 is
the concentration of a binary solution of solute i with water activity
equal to that of the ternary mixture. More generally for a mixture
of n solutes, the ideal mixing condition satisfies

1 =
n∑

i=1

mi

mi0

The iterative algorithm outlined in Appendix A utilises the fact
that every other (non-Zdanovskii) mixing path involves a change
in water activity, with a sign that systematically indicates how
to adjust concentration estimates for the binary solutions ‘being
mixed’. Fig. 2 illustrates how the algorithm progresses. The ini-
tial concentration estimate results in binary solutions with unequal
water activity (square markers). However, the direction for adjust-
ment – indicated by arrows – is known because the aw function
is monotonic decreasing with increasing concentration. The algo-
rithm iterates over mixing paths until the Zdanovskii mixing path
of constant water activity is found. The determination of the water
activity throughout this paper occurs to within a tolerance of 10−5.

3. Implementation

The method has now been fully implemented as part of our
JESS (Joint Expert Speciation System) software package [1,17]
[http://jess.murdoch.edu.au]. It has proved to be a general and
very fast method for predicting the thermodynamic properties of
aqueous solutions containing mixed strong electrolytes in high con-
centration.

The derivative of water activity for each solute is required
in order to construct the Jacobian matrix for Newton–Raphson
updates. A number of different schemes were trialled in an inves-
tigation of the optimal settings for minimising the number of
function evaluations required to achieve convergence. Table 1 sum-
marises the results for an example system of 4 electrolytes. Both
Derivative method J Iter. F 106�

Analytical 3 4 28 1.0
Analytical 1 13 56 6.0
Analytical 2 5 28 5.0
Numerical 4 5 24 1.9
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ater activity or its derivative was calculated. � gives the level of
onvergence achieved, representing the range over water activity
alues.

When the Jacobian is calculated every iteration, analytical
erivatives are more accurate than numerical but the cost of
omputation (measured in function evaluations) is greater. The
esults indicate that although the correct solution is obtained using
onstant Jacobian approximation, the quality of the solution dete-
iorates and the number of iterations increases. The best balance
etween speed and accuracy occurs where numerical derivatives
re used.

The excess Gibbs energy can be calculated when the activity of
he solvent and each of the constituent electrolytes is known. The
ctivity coefficient � i of an electrolyte in a mixture is related to its

sopiestic concentration via the relation

i = vimi0�i0∑
vjmj

able 2
omparison of experimental and simulated data.

m1 m2

KCl + KBr [18] 0.8116 1.2338
1.6383 0.4178
0.4244 1.6141
1.2242 0.8247
1.8508 1.1813
1.2566 1.7663
0.6225 2.3921
2.4638 0.5783
1.9242 2.4018
2.7351 1.5988
0.9999 3.3175
3.5560 0.7895

NH4Cl + BaCl2 [12] 0.8305 0.5517
1.2179 0.3041
0.2322 0.9329
0.5050 0.7592
0.3020 1.2015
1.6145 0.4009
1.0875 0.7234
0.6599 0.9845
1.2717 0.8497
1.8950 0.4783
0.3454 1.3976
0.7632 1.1509

Na2SO4 + MgSO4 [19] 0.400 0.400
0.500 0.500
0.600 0.600
0.700 0.700
0.800 0.800
0.900 0.900
1.000 1.000
1.200 1.200
1.400 1.400
1.600 1.600
1.800 1.800
2.000 2.000

CaCl2 + MgCl2 [20] 1.5492 0.3805
1.7814 0.3044
2.4999 0.2812
1.9557 0.8145
2.2632 0.5684
1.6398 1.0730
1.8517 1.8600
1.4470 2.1714
3.7015 0.4008
2.3332 2.5136
1.4557 3.3767
1.9773 2.9655
ta 81 (2010) 149–155 151

where vi is the number ions in the formula for electrolyte i and
� i0 is the activity coefficient in the binary solution (obtained using
the Pitzer equations) and the summation is over all electrolytes in
solution ([12] and references within).

4. Predictions

Some mixed electrolyte systems, for which the water activities
have been well characterised experimentally, were used in order to
test the predictive performance of the algorithm. (This effectively
limited this part of the study to comparisons with simple ternary
systems.)

Table 2 compares literature data with predictions made using

the present algorithm for various electrolyte systems. The concen-
tration of each component is given in mol kg−1, where m1 refers
to the first named component and m2 refers to the second com-
ponent. The experimental value of water activity is denoted aw

(meas.). In cases where either the osmotic coefficient or isopiestic

aw (meas.) aw (calc.) % aw (dev.)

0.9342 0.9342 0.001
0.9342 0.9343 0.009
0.9342 0.9343 0.004
0.9342 0.9343 0.012
0.9019 0.9019 0.003
0.9019 0.9019 0.006
0.9019 0.9018 0.016
0.9019 0.9019 0.000
0.8581 0.8576 0.058
0.8581 0.8578 0.033
0.8581 0.8573 0.086
0.8581 0.8579 0.022

0.9462 0.9461 0.008
0.9462 0.9462 0.002
0.9462 0.9461 0.011
0.9462 0.9461 0.009
0.9279 0.9279 0.002
0.9279 0.9279 0.001
0.9279 0.9278 0.007
0.9279 0.9278 0.007
0.9144 0.9141 0.030
0.9144 0.9142 0.021
0.9144 0.9143 0.016
0.9144 0.9141 0.030

0.9781 0.9779 0.02
0.9729 0.9725 0.04
0.9675 0.9669 0.06
0.9620 0.9612 0.08
0.9562 0.9551 0.11
0.9500 0.9487 0.14
0.9435 0.9420 0.16
0.9289 0.9271 0.19
0.9121 0.9103 0.20
0.8928 0.8912 0.18
0.8706 0.8697 0.10
0.8455 0.8458 0.03

0.8710 0.8660 0.57
0.8650 0.8510 1.62
0.7705 0.7748 0.55
0.7634 0.7714 1.04
0.7633 0.7662 0.38
0.7633 0.7759 1.64
0.6645 0.6423 3.34
0.6643 0.6511 1.99
0.6035 0.6070 0.57
0.5167 0.4854 6.05
0.5028 0.4774 5.05
0.5028 0.4679 6.94
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Table 3
Survey of common-ion ternary aqueous systems.

System Ref # data Mixing parameter (b) % aw deviation

A B C

NaCl + KCl [24,18] 89 −0.01 0.12 0.11 0.012
HClO4 + LiClO4 [16] 15 0.0035 0.043 0.013
HClO4 + NaClO4 [16] 64 −0.0073 0.37 0.57 0.32
LiClO4 + NaClO4 [16] 33 0.013 0.11 0.29 0.017
NaCl + NaBr [18] 8 0.0004 0.0049 0.0046
LiCl + NiCl2 [25] 8 0.012 0.0036 0.0015
Na2SO4 + MgSO4 [19] 16 −0.0063 0.067 0.054 0.065
KCl + MgCl2 [26] 34 −0.036 0.38 0.26 0.082
K2SO4 + MgSO4 [27] 22 0.049 0.15 0.15
NH4Cl + BaCl2 [12] 12 −0.004 0.01 0.0051
NaCl + NaNO3 [28] 13 −0.0089 0.08 0.15 0.044
NaBr + KBr [18] 12 −0.014 0.077 0.018
KCl + KBr [18] 12 −0.002 0.019 0.013
KCl + KNO3 [28] 8 0.00013 0.011 0.011
CaCl2 + MgCl2 [20] 43 −0.032 0.73 0.5
MgCl2 + MgSO4 [29] 44 0.041 0.05 1.84 0.027
MgCl2 + Mg(NO3)2 [30] 23 0.0045 0.12 0.26 0.048
HClO4 + UO2(ClO4) [31] 60 −0.013 0.31 0.33 0.22
NaClO4 + UO2(ClO4) [31] 60 −0.0049 0.26 0.47 0.26
Ca(NO3)2 + Mg(NO3)2 [30] 15 −0.016 0.34 0.69 0.10
CaCl2 + Ca(NO3)2 [30] 17 −0.0088 0.65 0.45
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A) Zdanovskii deviation without mixing parameter.
B) Zdanovskii deviation reported in [9].
C) Zdanovskii deviation using mixing parameter.

atio was reported the values have been converted to water activ-
ty for convenience of comparison. The predicted values of water
ctivity are reported as aw (calc.) and the absolute values of per-
entage deviation between the measured and calculated values as
aw (dev.).

The systems here were chosen to reflect the various types of
trong electrolytes which can be treated with this method. The
arameters chosen to model the binary electrolytes were those of
3]. Each of the systems can be seen to exhibit very good agree-

ent with the linear mixing rule. Almost all systems shown obey
danovskii’s rule to within the error of experiment. The largest
eviations occur for the system CaCl2 + MgCl2 but even in this case
he experimental values obey Zdanovskii’s rule reasonably well for
w > 0.76.

. Adjustments for nonideal behaviour

When solutions of equal water activity are mixed to become
ulticomponent systems the water activity may vary to some

xtent, i.e. not behave in full accordance with Zdanovskii’s rule.
his type of nonideal mixing presents complications on many lev-
ls. Some kind of mixing parameter must be introduced to describe
he system accurately and optimising such parameters necessitates
xperimental characterisation of the multicomponent system.

The ternary solution may then satisfy a mixing rule which incor-
orates a deviation from ideality, for instance
= m1

m10
+ m2

m20
+ � (1)

he way this function can be implemented in conjunction with the
rimary algorithm is detailed in Appendix B.

able 4
ew optimised Pitzer parameters for some 2:1 electrolytes.

Electrolyte References # data Max

Ca(NO3)2 [13,21] 62 6.0
Mg(NO3)2 [13,22,21] 108 5.02
6. Results

6.1. Comparison of calculated and observed results

When experimental data for the osmotic coefficient or water
activity are available it is possible to optimise the data and obtain
a parameter which reflects the extent of deviation from Zdanovskii
linearity and which can be used to make improved predictions. To
illustrate this effect we have chosen a simple one-parameter model
for describing nonideal mixing, that is � = b(m1m2/m1 + m2) in Eq.
(1). This model was first proposed in [23] to describe the deviation
from ideal mixing in a number of ternary solutions. It is adequate for
our purposes given that the number of data points in most available
data sets is quite limited.

Table 3 contains the analysis of 21 ternary electrolyte systems,
all containing a common ion and measured at 25 ◦C and 1 bar. Ref-
erences to the original sources are given, as well as the number
of data points used in the analysis. In most cases all of the data
from the given references have been used. In the least-squares
optimisation, all data have been given equal weight up to ionic
strength 4.0 mol kg−1 after which the weights have been scaled as
4.0 mol kg−1/[ionic strength]. Agreement between measured and
calculated values is expressed as the average percent deviation for
the data set (A).

This analysis is similar to the treatment in [10]. Where avail-
able, the values for average deviation calculated in that paper are
shown (B). The agreement between columns (A) and (B) is reason-
able. Small differences arise because the data sets differ, as does

the method of water activity determination in the binary solutions
(Chen et al. [10] used an nth degree polynomial (n ∼ <10) fit to
the data. This paper uses Pitzer models for osmotic coefficient as
described above). The percent average deviation including the mix-
ing parameter (C) makes clear that most of the systems are more

m ˇ0 ˇ1 C�

0.1673 1.662 −0.00675
0.3309 1.719 −0.00662
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Fig. 3. Convergence behaviour for large multicomponent systems.

ccurately represented by including the parameter. It is important
o note, however, that substantive deviations from ideal mixing
Zdanovskii’s rule) are rare.

.2. Use of Pitzer parameters

It is well known that using Pitzer models beyond the concentra-
ion range of parameter optimisation can lead to large inaccuracies.
his is particularly evident for electrolytes of the 2:1 type inves-
igated in this study. Evidently, the binary solutions must be
ccurately described for the water activity in the mixture to be
etermined accurately. Rather than limit the approach only to those
ernary solutions whose concentration is sufficiently low to be ade-
uately modelled using published parameters, we have optimised
ew sets of binary data Pitzer parameters (ˇ0, ˇ1, C�) applicable to
igher concentrations [1].

Presented in Table 4 are the results determined using activity
nd osmotic coefficients for the binary electrolytes shown. The
pper limit of concentration used in the parameter optimisation
or the parameters is also shown. For all other binary salts the
arameters in [3] were used.

.3. Algorithm performance with large multicomponent mixtures

Computational efficiency is of high importance when consid-
ring the applicability of Zdanovskii’s rule (or other mixing rule
pproaches) to large multicomponent mixtures, such as those
ncountered in industrial processes and environmental studies.

Fig. 3 presents the number of iterations required for conver-
ence for large multicomponent mixtures. Systems comprising 5,
0 and 100 electrolytes were simulated 1000 times each with ran-
om mixture compositions. The number of iterations required for
onvergence increases only marginally as the system size grows,
howing that the present algorithm is well suited to evaluating the
hermodynamic properties of large mixtures.

. Discussion

It has long been understood that the solvent is a fundamental
river of solution thermodynamics and, in particular, of the activity
oefficients of solutes. For this reason, Robinson and Stokes [13, p.
48] developed their well known ionic hydration models more than

alf a century ago. Initially, these models proved very successful in
ationalising the activity coefficients of many strong electrolytes
n aqueous solution but they have, evidently, not since fulfilled
heir early promise, especially in the case of mixed solutions. It
s clear nowadays from dielectric relaxation spectrometry [32,33]
Fig. 4. The number of iterations to achieve convergence.

and other techniques that hydration processes are too dynamic
and subtle to be well characterised by functions based on sim-
ple hydration numbers. On the other hand, a description of how
water activities behave in multicomponent mixed electrolyte solu-
tions can be achieved using the present algorithm without resort
to activity coefficients other than those of the binary solutions. This
therefore presents an opportunity to develop better activity coeffi-
cient models for chemical species than have been available hitherto.
We envisage that this will confer significant advantage in chemi-
cal speciation modelling by further reducing the number and the
uncertainty of parameters required to describe large multicompo-
nent aqueous systems.

The convergence of the present algorithm will improve if bet-
ter starting estimates of the binary concentrations can be found.
The approximation that the osmotic coefficients for each binary
electrolyte are equal is reasonable when no other information is
available. On the other hand, when predicting the water activity
for the same mixture of electrolytes at different concentrations
many times in succession, the rate of convergence can be greatly
improved as follows. For a ternary mixture with composition
mA

1, mA
2, selected as broadly reflective of the composition of the

group of mixtures for which the water activity is to be computed,
let the corresponding iso-activity concentrations in the binary solu-
tions be mA

10 and mA
20. The isopiestic ratio for the solution is given

by h12 = (mA
10/mA

20).
The isopiestic ratio can be used to provide an improved esti-

mate of the binary concentrations for subsequent predictions of
water activity. If the mixture composition is m1, m2, the new
estimates of binary concentration will be m10 = m1 + h12m2 and
m20 = (m1 + h12m2)/h12. The extension of this to n electrolytes is
straightforward, viz. let h1i = (mA

10/mA
i0) then mi0 =

∑n
j=1h1jmj/h1i.

Fig. 4 shows a histogram of the frequency with which conver-
gence is attained for a system of four electrolytes for randomly
selected mixture compositions. The filled bars show the conver-
gence frequencies when the initial concentrations are estimated
using the concentration and stoichiometry of the mixture com-
ponents. The white bars show that the convergence behaviour
improves when the starting concentration estimates are informed
by prior evaluation of the system. In both cases the concentrations
for each electrolyte in the mixture were drawn uniformly from the
interval (0.3, 1.5) mol kg−1, yielding total solution concentrations
in the approximate range 1.2–6.0 mol kg−1.
In cases where the desired mixture concentrations are known in
advance, e.g. in the production of look-up tables or comparison with
experiment, the evaluations can proceed in order of decreasing
water activity, thereby allowing new starting binary concentrations
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o be calculated using the slope of the previous evaluation, greatly
educing the subsequent number of iterations.

. Conclusion

In physical terms, there is a unique mixing path with constant
ater activity between any two binary (single salt in water) elec-

rolyte solutions. When expressed in molal concentrations, this
onstant water activity mixing path may be linear (i.e. in accord
ith Zdanovskii’s rule) or, to some modest extent, curved. In either

ase, the present algorithm seeks to find the concentrations of the
inary solutions m10, m20, at each end of the particular line which
asses through the point corresponding to the mixed solution in
uestion. The required binary solution concentrations are those
hich, by definition, have identical water activities. Since every

ther line pivoting through the mixed point must have water activ-
ties at the two ends which differ, and indeed which indicate a
irection for adjustment, the unique line of constant water activity
an be located and, hence, the water activity of the mixed solution
apidly determined.
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ppendix A.

.1. Primary algorithm for ideal mixing

At each stage in the algorithm the estimated binary concentra-
ions are related to the concentration in the mixture via

i0 = mi

pi
(A.1)

he collection of p values – one for each solute – is referred to in this
aper as the partition of the mixture. The ideal mixing condition is
een to be satisfied when �pi = 1. This formulation is equivalent to
thers based on conservation of solvent mass.

The algorithm which finds the water activity of the mixture is
iven by the following steps.

tep 0: Estimate the binary solution concentrations, adhering to
the constraint �pi = 1.

tep 1: Evaluate the water activity for each binary solution at the
given concentration.

tep 2: Stop if the water activity calculations have converged to a
single value.

tep 3: Estimate new binary concentrations and go to Step 1.

Details of each step of the algorithm are as follows.

.2. Algorithm Step 0

The initial partition is chosen to reflect the dominance of each
olute. If v̄ denotes the total moles of dissolved ions and molecules
n the solution, v̄ =

∑
vimi, then pi = (vimi)/v̄, where vi is the num-

er of moles of ions or molecules formed when one mole of solute

completely dissociates.

This is a reasonable starting point since ln aw ∝ vimi0�i0. Mak-
ng the approximation that �i0, the osmotic coefficients for the
inary solutions, are all equal means that the iso-activity condition

s realised when vimi0 = const, as defined by this initial partition.
ta 81 (2010) 149–155

For a system of symmetric electrolytes this has the effect that
the estimated concentrations for the binary solutions will each be
equal to the total concentration of the mixture, and this will give
the exact answer for solutes whose water activities vary identically
with concentration. Of course, the better this initial approximation
the faster the algorithm will converge (see Section 7).

A.3. Algorithm Step 1

The water activity of a solution can be obtained from the osmotic
coefficient � using the relation

� = −Mw(ln aw)v̄−1

where Mw = 55.51 mol kg−1 is the molar concentration of water. For
a single electrolyte the water activity is given by

ln aw = − vimi0�i0

Mw
(A.2)

The osmotic coefficient for each binary electrolyte solution can be
determined, for example, using the Pitzer equations provided the
Pitzer coefficients for the electrolyte are known, which is generally
the case for binary electrolytes.

A.4. Algorithm Step 2

The algorithm terminates when the water activity values calcu-
lated at Step 1 are sufficiently close to one another. A convenient
and simple measure of closeness is the range of the water activity
values over all binary electrolyte solutions, i.e. � = max aw − min aw.

A.5. Algorithm Step 3

The objective is to adjust the concentrations of the binary solu-
tions mi0, so that solutions with high water activity become more
concentrated and solutions with low water activity become more
dilute. Conceptually, this can be regarded as exchange of solvent
between the binary components.

Consider the case of a ternary mixture and let the kth solute be
the component with the largest water activity, and the jth solute
have the smallest water activity. The � value is minimised if the
new partition results in these activities being equal, that is

aw(pk + ıpk) = aw(pj + ıpj)

The left hand side of this relation can be expanded in a Taylor’s
series

aw(pk + ıpk) = aw(pk) + ıpk
daw

dpk
+ O (ıp2

k)

Equating this result with the analogous expression for aw(pj + �pj)
gives to first order

aw(pk) + ıpk
daw

dpk
≈ aw(pj) + ıpj

daw

dpj

Leaving the sum of the partition values unchanged requires
�pk = −�pj therefore

ıpj ≈ aw(pk) − aw(pj)
(daw/dpk) + (daw/dpj)

The derivative of water activity with respect to pi is found using the
relation
daw

dpi
=

(
daw

dmi0

)(
dmi0

dpi

)

The first derivative on the right hand side can be determined
either numerically or analytically from Eq. (A.2). The second is
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btained from the definition in Eq. (A.1). The concentration of the
olute in the mixture is constant throughout the investigation so it
ollows that

dmi0

dpi
= −mi

p2
i

The method of binary concentration adjustment outlined above
s equivalent to the Newton–Raphson method for finding the solu-
ion of a system of equations [34]. To extend the method to

ulticomponent systems simply requires constructing the Jaco-
ian matrix of partial derivatives and solving for the �p vector at
ach iteration.

ppendix B.

The relationship for a ternary solution which holds at isopiestic
quilibrium with its pure binary components is

¯� = v1m10�10 = v2m20�20

here v̄ = v1m1 + v2m2. Substituting these relations into Eq. (1)
ields

= v̄� − v1m1�10 − v2m2�20

v̄�

earranging this equation gives

= v1m1�10 + v2m2�20

v̄(1 − �)

s stated in the discussion of Step 0 in Appendix A, the concentra-
ions of the binary solutions should best reflect the dominance of
ach solute. Using the condition v1m10 = v2m20 = m·, substitution
nto (1) yields

= v1m1

m· + v2m2

m· + �

r

· = v̄
1 − �

ith this result it follows that the initial partition for nonideal
ixing is given by

i = vimi(1 − �)
v̄

nd the total value of the partition is �pi = 1 − �. When the devia-
ion can be calculated a priori given the mixture composition (as is
he case for the simple deviation considered here) the only change
o the algorithm occurs when the initial concentration estimates
re made.
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